Chemical Ionization of 1-Olefins ($C_{15}-C_{18}$) by CH_5^+ , $C_2H_5^+$, and $C_3H_5^+$ **in an Ion-Trap Type of Mass Spectrometer**

Masaharu Tsuji,* Yuki Tanaka,† Takeshi Arikawa,† and Yukio Nishimura

Institute of Advanced Material Study, Kyushu University, Kasuga, Fukuoka 816-8580 †*Department of Applied Science for Electronics and Materials, Graduate School of Engineering Sciences,*

Kyushu University, Kasuga, Fukuoka 816-8580

(Received April 13, 2000; CL-000352)

Chemical ionization of 1-olefins (1-C_xH_{2x}: x = 15–18) by the CH_5^+ , $C_2H_5^+$, and $C_3H_5^+$ ions has been studied using an iontrap type of GC/MS under a reactant-ion-selected mode. In all the reactions, C_yH_{2y+1} ⁺ (y = 3–x) alkyl and C_yH_{2y-1} ⁺ (y = 3–x) alkenyl ions were observed with maximum intensities at y = 3–5 for $C_yH_{2y+1}^+$ and at y=7 or 8 for $C_yH_{2y-1}^+$.

Chemical ionization (CI) mass spectra in a methane atmosphere provide valuable information on the reactivity of carbocations in the gas phase. Field¹ measured $CH₄$ CI mass spectra of 1-olefins (1- C_xH_{2x} : x = 6–10, 12, 16, 20) at a CH₄ pressure of 1 Torr (= 133 Pa), where dominant reactant ions were CH_5 ⁺ (48%), $C_2H_5^+$ (40%), and $C_3H_5^+$ (6%). He has found that straight-chain 1-olefins undergo extensive fragmentation to produce the spectra consisting of series of C_yH_{2y+1} ⁺ (y = 3–x) alkyl and C_vH_{2v-1} ⁺ (y = 4–x) alkenyl ions. He has reported that the attack of the reactant ions on the olefin molecules occurs predominantly at the double bonds. Since CI mass spectra of 1 olefins were measured without selecting each reactant ion, the relative contribution of the major CH_5^+ (48%) and C_2H_5^+ (40%) ions to the formation of alkyl and alkenyl ions was not studied.

This study is the first measurements of $CH₄$ CI mass spectra of 1-olefins $(1-C_xH_{2x}: x = 15-18)$ by selecting reactant CH_5^+ , $C_2H_5^+$, or $C_3H_5^+$ ion in an ion-trap type of GC/MS. The dependence of product–ion distributions on the reaction time was measured in order to examine the effects of collisional stabilization. The reactivity of $C_nH_5^+$ (n = 1–3) for 1- C_xH_{2x} (x = 15–18) was discussed from the product–ion distributions.

CH4 CI mass spectra were obtained using a Hitachi M7200 GC/MS under a reactant-ion-selected mode. The partial pressures of CI source $CH₄$ gas and carrier He gas in the ion-trap cell were 7×10^{-5} and 5×10^{-5} Torr, respectively. The time for storing a selected reactant ion was 5 ms and the reaction time between the reactant ion and $1-C_xH_{2x}$ was varied in the 0.2–50 ms region. The total number of collisions of a product ion with $CH₄$ and He was about 0.5–120 times during these reaction times. These values were smaller than 200 times in the mediumpressure CI experiments of Field¹ during a residence time of 10^{-5} s at a CH₄ gas pressure of 1 Torr.

CI mass spectra of 1-C_xH_{2x} (x = 15–18) by the C_nH₅⁺ (n = 1–3) ions consisted of $C_yH_{2y+1}^+$ (y = 3–x) alkyl and $C_yH_{2y-1}^+$ (y = 3–x) alkenyl ions. This result indicates that all the three reactant ions participate in the formation of alkyl and alkenyl ions. The intensity distributions of C_vH_{2v+1} ⁺ and C_vH_{2v-1} ⁺ depended on the reaction time. The maximum of the product distributions of alkyl and alkenyl ions shifted to low *m/z* value with decreasing the reaction time, though the peak shifts were small below 2 ms for the alkenyl ions. On the basis of this finding, we conclude that collisional stabilization takes part in the formation of alkyl and alkenyl ions at long reaction times. The initial branching ratios of each product ion were determined by extrapolating the intensity distributions to zero reaction time.

Figures $1(a)-1(f)$ show the initial branching ratios of C_yH_{2y+1} ⁺ and C_yH_{2y-1} ⁺ (y \leq x) ions in the reactions of C_nH_5 ⁺ (n = 1–3) with C_xH_{2x} (x = 15–18). The intensity distributions of $C_yH_{2y+1}^+$ and $C_yH_{2y-1}^+$ are essentially independent of C_x in the x = 15–18 range. In the CH₅⁺ reactions, the C_yH_{2y+1}⁺ distribution peaks at y = 5, and rapidly decreases with increasing *m/z*. The C_yH_{2y-1} ⁺ distribution is narrower than the C_yH_{2y+1} ⁺ one, having a sharp peak at $y = 7$. In the C₂H₅⁺ reactions, the C_yH_{2y+1}⁺ distribution peaks at $y = 4$, decreases more slowly than that in the $CH₅⁺$ reactions with increasing *m/z*, and increases again for the largest C_xH_{2x+1} ⁺ ion. The C_yH_{2y-1} ⁺ distribution is bimodal with peaks at $y = 4$ and 7. The C_yH_{2y+1} ⁺ distribution in the C_3H_5 ⁺ reactions is similar to that in the C_2H_5 ⁺ reactions, except for a small shift of the peak position from $y = 4$ to 3. The C_yH_{2y-1}⁺ distribution in the $C_3H_5^+$ reactions is also similar to that in the $C_2H_5^+$ reactions, though the second peak at $y = 3$ or 4 is more pronounced.

Field¹ measured CH₄ CI mass spectrum of $1-C_{16}H_{32}$ without separating the reactant ions. The intensity distributions of C_yH_{2y+1} ⁺ and C_yH_{2y-1} ⁺ in his spectra were similar to those observed here in the $C_2H_5^{\ast}/1-C_{16}H_{32}$ reactions, except for the appearance of a relatively strong $C_{16}H_{31}$ ⁺ peak and the lack of the second C_vH_{2v-1} ⁺ peak at y = 3 or 4. It is therefore reasonable to assume that responsible reactant ion for the formation of product ions was $C_2H_5^+$ in his CI measurement.

The maximum and average kinetic energies of reactant ions in our apparatus were evaluated to be 10 and 4.2 eV for CH_5^+ , 6.0 and 2.4 eV for $C_2H_5^+$, and 4.3 and 1.7 eV for $C_3H_5^+$, respectively, using a pseudo-potential well method.2 These energies are higher than those in the medium-pressure CI experiments of Field,¹ which were estimated to be less than 1 eV .³ The extent of fragmentation in the $C_2H_5^{\dagger}/1-C_{16}H_{32}$ reaction is slightly higher than that observed by Field.¹ This is explained by the higher kinetic energies and the lack of collisional stabilization at short reaction times in our experiments.

The following general tendencies are obtained from Figures 1(a)–1(f). The largest C_xH_{2x+1} ⁺ alkyl ions, produced by protonation of parent C_xH_{2x} molecules, are observed in all the three reactions, and their branching ratios in the $C_2H_5^+$ and $C_3H_5^+$ reactions are larger than those in the CH₅⁺ ones. The peak of the C_yH_{2y+1} ⁺ distribution shifts from $y = 5$ to 3 as the reactant ion changes from CH₅⁺ to C₃H₅⁺. The branching ratios of large C_yH_{2y+1}⁺ (y ≥ 9) ions in the CH₅⁺ reactions are smaller than those in the $C_2H_5^+$ and C_3H_5 ⁺ ones. The branching ratios of the largest C_xH_{2x-1} ⁺ alkenyl ions are either zero or very small in all the three reactions. The most favorable alkenyl ion was $C_7H_{13}^+$ in almost all the reactions.

Figure 1. Intensity distributions of $C_yH_{2y+1}^+$ and $C_yH_{2y+1}^+$ in the CH₅⁺, $C_2H_5^+$, and $C_3H_5^+$ reactions. \Diamond :C₁₈H₃₆, \Box :C₁₇H₃₄, \triangle :C₁₆H₃₂, \bigcirc :C₁₅H₃₀

A second peak at $y = 3$ or 4 appears in the $C_2H_5^+$ and $C_3H_5^+$ reactions, and it is more prominent in the $C_3H_5^+$ reactions. The branching ratios of large C_yH_{2y-1} ⁺ (y ≥ 9) ions in the CH₅⁺ reactions are smaller than those in the $C_2H_5^+$ and $C_3H_5^+$ ones.

The Σ I(C_yH_{2y+1}⁺)/ Σ I(C_yH_{2y-1}⁺) ratios for $y \le x$ in the CH_5^+ , $C_2H_5^+$, or $C_3H_5^+$ reactions, which were essentially independent of C_x (x = 15–18), were determined to be 1.3 ± 0.1, 1.1 \pm 0.3, and 1.3 \pm 0.1, respectively. This shows that reaction pathways leading to alkyl ions are slightly more favorable than those leading to alkenyl ions in all the three reactions.

Various reaction mechanisms leading to alkyl and alkenyl ions have been proposed.¹ The alkyl ions are expected to be produced through the proton transfer followed by $C_{x-y}H_{2(x-y)}$ elimination in the $C_nH_5^+$ (n = 1–3) reactions:

$$
C_{n}H_{5}^{+} + C_{x}H_{2x} \rightarrow C_{x}H_{2x+1}^{+} \rightarrow C_{y}H_{2y+1}^{+} + C_{x-y}H_{2(x-y)}
$$
(1)

On the other hand, possible formation processes of alkenyl ions are proton transfer followed by H_2 and $C_{x-y}H_{2(x-y)}$ elimination in the CH_5 ⁺ reactions and abstraction of a hydride or alkide ion from olefins in the $C_nH_5^+$ (n = 2, 3) reactions:

$$
CH_{5}^{+} + C_{x}H_{2x} \rightarrow C_{x}H_{2x+1}^{+} \rightarrow C_{x}H_{2x-1}^{+} + H_{2}
$$
\n(2a)

$$
C_{x}H_{2x-1}^{+} \rightarrow C_{y}H_{2y-1}^{+} + C_{x-y}H_{2(x-y)}
$$
\n
$$
- C_{-}H_{c}
$$
\n(2b)

$$
C_{n}H_{5}^{+} + C_{x}H_{2x} \stackrel{\text{1} \quad 0}{\rightarrow} C_{x}H_{2x-1}^{+} \rightarrow C_{y}H_{2y-1}^{+} + C_{x-y}H_{2(x-y)}
$$
(3)

$$
C_nH_5^+ + C_xH_{2x} \rightarrow C_yH_{2y-1}^+ + C_{n+x-y}H_{2(x-y+3)}
$$
\n(4)

The most favorable alkyl and alkenyl ions are nearly the same for $x = 15-18$, indicating that the dissociation of carbon chain occurs with the highest probability at the same position from the terminal. Since the proton affinity of $CH₄$ (5.7 eV) is smaller than those of C_2H_4 (7.1 eV) and C_3H_4 (8.0 eV),⁴ more excess energies are released in the $CH₅⁺$ reactions. This will be a major reason for the small branching ratios of large alkyl and alkenyl ions ($y \ge 9$) in the CH₅⁺ reactions. Although the formation process of alkenyl ions in the CH_5^+ reactions is different from those in the C₂H₅⁺ and C₃H₅⁺ ones, the Σ I(C_yH_{2y+1}⁺)/ Σ $I(C_vH_{2v-1}^+)$ ratios were found to be similar among the three reactions. Further studies, including energy calculations of various reaction pathways, are in progress in order to explain this finding.

References

- 1 F. H. Field, *J. Am. Chem. Soc.*, **90**, 5649 (1968).
- 2 J. F. J. Todd, R. M. Waldren, and R. F. Bonner, *Int. J. Mass Spectrom. Ion Phys*., **34**, 17 (1980).
- 3 C. Chang, G. G. Meisels, and J. A. Taylor, *Int. J. Mass Spectrom. Ion Phys*., **12**, 411 (1973).
- 4 S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, *J. Phys. Chem. Ref. Data*, **17**, Suppl. 1 (1988).